

EVALUATING SLOPE

Definition: Slope is the steepness of the land expressed astheamount (in percent) of vertical fall per 100 feet of horizontal distance. For example, a 3\% slope means a three foot change in elevation per 100 feet of horizontal distance.

Importance of slope: Slope along with soil texture(sand, loam, clay) and ground cover determineshow fast water will drain from an area. Water drains quickly from steep slopes, however erosion may be a problem. Flat surfaces may result in saturated soils. Slope can be managed during road design and layout.

Estimating slope: Slope can be divided into three broad categories: flat, moderate, and steep. Standing downhill, and facing uphill, try to look level back into the hill. To help keep your line of sight level, face uphill with your arm stretched out in front of you with a pencil (or a rolled up dollar bill) pointing up out of your fist. Looking over the tip of the pencil will keep your sight level. Estimate the horizontal, level distancebetween you and whereyour line of sight hitstheground. Dividetheheight distance by horizontal distance to determine the percent of slope. Instruments can be obtained to increase accuracy: an Abney level for \$100+, a clinometer for $\$ 100$, or a slope gauge for $\$ 40$.

Other sources of slope information:

USGS topographic maps
Soil surveys
Soils maps

EVALUATION OF AERIAL PHOTOS

— Definition:Aerial photographsor"maps" are high altitude photos taken in a very conciseandsystematicmanner. Although maps can be made in color and even infrared, the most commonly used aerial photosareblack and white. Thetop of the map is usually north.

Information provided:

- Boundaries and timber types (for example, on aerial photos, pines appear darker than hardwoods)
- Drainage patterns
- Roads, buildings, etc.

Scale: Aerial photos comein many scales such as $1^{\prime \prime}=660$ ', 1320', etc. It is important to know the photo scale beforeusing.

Sources for aerial photo information:

- Natural ResourcesConservation Service
- Farm Services Agency
- Louisiana Department of Agriculture and Forestry
- Private vendors

EVALUATION OF SOIL MAPS

Definition: Soils maps are aerial photo-
graphson which thetypesaredelineated.
Soils are classified, mapped, and pub-
lished by the Natural Resources Conser-
vation Service into a book called a Soil
Survey. A Soil Survey can be obtained at
your local NRCS office.

Use for soil maps:

- Plan routes
- Avoid problem areas such aswet areas
- Plan where and how to cross streams
- Estimate slopes that may be encountered
- Determine drainage patterns

Soil surveys and soils maps are important planning tools, but an on-site check of theexact soil typeand slopeisessential.

Appendix II: Planning Tools

EVALUATION OF TOPOGRAPHC MAPS

EVALUATION OF DRAINAGE AREA

-

Definition: Drainagearea, or watershed, isthetotal number of acres which drain to a common point, such as a culvert, creek crossing, or bridge. Determining the acreage in the watershed is important in sizing culverts, locating stream crossings, or locating bridges.

Using topographic maps: Topographic maps show changes in elevation by a series of contour lines. These lines can be used to determine which slopes drain through an area. To determinethe watershed, it ishelpful to remember two things:

- On hilltops, contour lines will form a small, roughly circular shape.

On contour lines with fingerlikeprojections, the fingers point uphill.

The watershed can be defined by drawing arrows in the direction of drainage to the common point.

Determining areas: After the watershed is drawn, the number of acres in the area can be estimated. For a topographic map with a scale of $1: 24,000$ (a 7.5 minute map) the table below can be used as a quick guide.

Guide for Area Estimation on 7.5-Minute Topographic Maps

An example of rolling dips on a permanent road.

